Goto

Collaborating Authors

 Austin


Iterative Least Trimmed Squares for Mixed Linear Regression

Neural Information Processing Systems

Given a linear regression setting, Iterative Least Trimmed Squares (ILTS) involves alternating between (a) selecting the subset of samples with lowest current loss, and (b) re-fitting the linear model only on that subset. Both steps are very fast and simple. In this paper we analyze ILTS in the setting of mixed linear regression with corruptions (MLR-C). We first establish deterministic conditions (on the features etc.) under which the ILTS iterate converges linearly to the closest mixture component. We also evaluate it for the widely studied setting of isotropic Gaussian features, and establish that we match or better existing results in terms of sample complexity. We then provide a global algorithm that uses ILTS as a subroutine, to fully solve mixed linear regressions with corruptions. Finally, we provide an ODE analysis for a gradient-descent variant of ILTS that has optimal time complexity. Our results provide initial theoretical evidence that iteratively fitting to the best subset of samples - a potentially widely applicable idea - can provably provide state-of-the-art performance in bad training data settings.


Hierarchical Hybrid Sliced Wasserstein: A Scalable Metric for Heterogeneous Joint Distributions

Neural Information Processing Systems

Sliced Wasserstein (SW) and Generalized Sliced Wasserstein (GSW) have been widely used in applications due to their computational and statistical scalability. However, the SW and the GSW are only defined between distributions supported on a homogeneous domain. This limitation prevents their usage in applications with heterogeneous joint distributions with marginal distributions supported on multiple different domains. Using SW and GSW directly on the joint domains cannot make a meaningful comparison since their homogeneous slicing operator, i.e., Radon Transform (RT) and Generalized Radon Transform (GRT) are not expressive enough to capture the structure of the joint supports set. To address the issue, we propose two new slicing operators, i.e., Partial Generalized Radon Transform (PGRT) and Hierarchical Hybrid Radon Transform (HHRT). In greater detail, PGRT is the generalization of Partial Radon Transform (PRT), which transforms a subset of function arguments non-linearly while HHRT is the composition of PRT and multiple domain-specific PGRT on marginal domain arguments. By using HHRT, we extend the SW into Hierarchical Hybrid Sliced Wasserstein (H2SW) distance which is designed specifically for comparing heterogeneous joint distributions. We then discuss the topological, statistical, and computational properties of H2SW.


A Bayesian Approach for Personalized Federated Learning in Heterogeneous Settings

Neural Information Processing Systems

Federated learning (FL), through its privacy-preserving collaborative learning approach, has significantly empowered decentralized devices. However, constraints in either data and/or computational resources among participating clients introduce several challenges in learning, including the inability to train large model architectures, heightened risks of overfitting, and more. In this work, we present a novel FL framework grounded in Bayesian learning to address these challenges. Our approach involves training personalized Bayesian models at each client tailored to the unique complexities of the clients' datasets and efficiently collaborating across these clients. By leveraging Bayesian neural networks and their uncertainty quantification capabilities, our local training procedure robustly learns from small datasets. And the novel collaboration procedure utilizing priors in the functional (output) space of the networks facilitates collaboration across models of varying sizes, enabling the framework to adapt well in heterogeneous data and computational settings. Furthermore, we present a differentially private version of the algorithm, accompanied by formal differential privacy guarantees that apply without any assumptions on the learning algorithm. Through experiments on popular FL datasets, we demonstrate that our approach outperforms strong baselines in both homogeneous and heterogeneous settings, and under strict privacy constraints.


Researchers develop face 'e-tattoo' to track mental workload in high-stress jobs

FOX News

Tyler Saltsman, founder and CEO of EdgeRunner AI, warned that creating artificial general intelligence could "destroy the world as we know it." Scientists say that they have formulated a way to help people in stressful and demanding work environments track their brainwaves and brain usage -- an electronic tattoo device, or "e-tattoo," on the person's face. In a study posted in the science journal Device, the team of researchers wrote that they found e-tattoos to be a more cost-effective and simpler way to track one's mental workload. Dr. Nanshu Lu, the senior author of the research from the University of Texas at Austin, wrote that mental workload is a critical factor in human-in-the-loop systems, directly influencing cognitive performance and decision-making. Lu told Fox News Digital in an email that this device was motivated by high-demand, high-stake jobs such as pilots, air traffic controllers, doctors and emergency dispatchers.


Rand-NSG: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node

Neural Information Processing Systems

Current state-of-the-art approximate nearest neighbor search (ANNS) algorithms generate indices that must be stored in main memory for fast high-recall search. This makes them expensive and limits the size of the dataset. We present a new graph-based indexing and search system called DiskANN that can index, store, and search a billion point database on a single workstation with just 64GB RAM and an inexpensive solid-state drive (SSD). Contrary to current wisdom, we demonstrate that the SSD-based indices built by DiskANN can meet all three desiderata for large-scale ANNS: high-recall, low query latency and high density (points indexed per node). On the billion point SIFT1B bigann dataset, DiskANN serves > 5000 queries a second with < 3ms mean latency and 95%+ 1-recall@1 on a 16 core machine, where state-of-the-art billion-point ANNS algorithms with similar memory footprint like FAISS [18] and IVFOADC+G+P [8] plateau at around 50% 1-recall@1. Alternately, in the high recall regime, DiskANN can index and serve 5 10x more points per node compared to state-of-the-art graphbased methods such as HNSW [21] and NSG [13]. Finally, as part of our overall DiskANN system, we introduce Vamana, a new graph-based ANNS index that is more versatile than the existing graph indices even for in-memory indices.


84ca3f2d9d9bfca13f69b48ea63eb4a5-Paper-Conference.pdf

Neural Information Processing Systems

Motivated by the neuromorphic principles that regulate biological neural behaviors, PPLNs are ideal for processing data captured by event cameras, which are built to simulate neural activities in the human retina. We discuss how to represent the membrane potential of an artificial neuron by a parametric piecewise linear function with learnable coefficients. This design echoes the idea of building deep models from learnable parametric functions recently popularized by Kolmogorov-Arnold Networks (KANs). Experiments demonstrate the state-of-the-art performance of PPLNs in event-based and image-based vision applications, including steering prediction, human pose estimation, and motion deblurring.


Supplementary Material: Interpretable multi-timescale models for predicting fMRI responses to continuous natural speech

Neural Information Processing Systems

Each of these figures has 3 flatmaps for a subject that depict the estimated timescale in the interpolated and ฮด-sum models, and the CL preference index as per the CL manipulation technique. Only significantly predicted voxels are shown. These flatmaps correspond to figures 3-5 in the main text and follow the same colormap. Note that subject S04 is excluded from this study due to poor data quality, resulting in 6 subjects overall. Results from subject S03 (highest number of significant voxels) are shown in the main text.


Neural Cover Selection for Image Steganography

Neural Information Processing Systems

In steganography, selecting an optimal cover image--referred to as cover selection--is pivotal for effective message concealment. Traditional methods have typically employed exhaustive searches to identify images that conform to specific perceptual or complexity metrics. However, the relationship between these metrics and the actual message hiding efficacy of an image is unclear, often yielding less-than-ideal steganographic outcomes. Inspired by recent advancements in generative models, we introduce a novel cover selection framework, which involves optimizing within the latent space of pretrained generative models to identify the most suitable cover images, distinguishing itself from traditional exhaustive search methods. Our method shows significant advantages in message recovery and image quality. We also conduct an information-theoretic analysis of the generated cover images, revealing that message hiding predominantly occurs in low-variance pixels, reflecting the waterfilling algorithm's principles in parallel Gaussian channels.


Zero-Shot Transfer of Neural ODEs

Neural Information Processing Systems

Autonomous systems often encounter environments and scenarios beyond the scope of their training data, which underscores a critical challenge: the need to generalize and adapt to unseen scenarios in real time. This challenge necessitates new mathematical and algorithmic tools that enable adaptation and zero-shot transfer. To this end, we leverage the theory of function encoders, which enables zero-shot transfer by combining the flexibility of neural networks with the mathematical principles of Hilbert spaces. Using this theory, we first present a method for learning a space of dynamics spanned by a set of neural ODE basis functions. After training, the proposed approach can rapidly identify dynamics in the learned space using an efficient inner product calculation. Critically, this calculation requires no gradient calculations or retraining during the online phase. This method enables zero-shot transfer for autonomous systems at runtime and opens the door for a new class of adaptable control algorithms. We demonstrate state-of-the-art system modeling accuracy for two MuJoCo robot environments and show that the learned models can be used for more efficient MPC control of a quadrotor.


Designs for Enabling Collaboration in Human-Machine Teaming via Interactive and Explainable Systems

Neural Information Processing Systems

Collaborative robots and machine learning-based virtual agents are increasingly entering the human workspace with the aim of increasing productivity and enhancing safety. Despite this, we show in a ubiquitous experimental domain, Overcooked-AI, that state-of-the-art techniques for human-machine teaming (HMT), which rely on imitation or reinforcement learning, are brittle and result in a machine agent that aims to decouple the machine and human's actions to act independently rather than in a synergistic fashion. To remedy this deficiency, we develop HMT approaches that enable iterative, mixed-initiative team development allowing end-users to interactively reprogram interpretable AI teammates. Our 50-subject study provides several findings that we summarize into guidelines. While all approaches underperform a simple collaborative heuristic (a critical, negative result for learning-based methods), we find that white-box approaches supported by interactive modification can lead to significant team development, outperforming white-box approaches alone, and that black-box approaches are easier to train and result in better HMT performance, highlighting a tradeoff between explainability and interactivity versus ease-of-training. Together, these findings present three important future research directions: 1) Improving the ability to generate collaborative agents with white-box models, 2) Better learning methods to facilitate collaboration rather than individualized coordination, and 3) Mixed-initiative interfaces that enable users, who may vary in ability, to improve collaboration.